GCE AS/A level

WJEC
0977/01

MATHEMATICS FP1 Further Pure Mathematics

A.M. THURSDAY, 14 June 2012
$11 / 2$ hours

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.
Answer all questions.
Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. Given that

$$
S_{n}=\sum_{r=1}^{n} r\left(r^{2}-1\right),
$$

obtain an expression for S_{n} in terms of n, giving your answer as a product of linear factors.
2. The complex number z satisfies the equation

$$
z(2+\mathrm{i})=(1+2 \mathrm{i})^{2} .
$$

(a) Express z in the form $x+\mathrm{i} y$.
(b) Find the modulus and argument of z.
3. The roots of the quadratic equation $2 x^{2}+x+2=0$ are denoted by α, β.
(a) Show that

$$
\begin{equation*}
\frac{\alpha^{2}}{\beta}+\frac{\beta^{2}}{\alpha}=\frac{11}{8} . \tag{5}
\end{equation*}
$$

(b) Find the quadratic equation whose roots are $\frac{\alpha^{2}}{\beta}, \frac{\beta^{2}}{\alpha}$.
4. The matrix \mathbf{A} is given by

$$
\mathbf{A}=\left[\begin{array}{lll}
3 & 4 & 2 \\
1 & 1 & 4 \\
4 & 5 & 7
\end{array}\right]
$$

(a) (i) Find the adjugate matrix of \mathbf{A}.
(ii) Find the inverse of \mathbf{A}.
(b) Hence solve the equations

$$
\left[\begin{array}{lll}
3 & 4 & 2 \tag{2}\\
1 & 1 & 4 \\
4 & 5 & 7
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
1 \\
7 \\
10
\end{array}\right] .
$$

5. (a) Determine the value of k for which the following system of equations is consistent.

$$
\left[\begin{array}{rrr}
1 & 2 & 3 \tag{5}\\
2 & 3 & 1 \\
3 & 4 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
2 \\
3 \\
k
\end{array}\right]
$$

(b) Find the general solution for this value of k.
6. Use mathematical induction to prove that $n^{3}+2 n$ is divisible by 3 for all positive integers n.
7. The transformation T in the plane consists of a reflection in the line $y=x$ followed by a translation in which the point (x, y) is transformed to the point $(x-2, y+2)$ followed by a reflection in the x-axis.
(a) Show that the matrix representing T is

$$
\left[\begin{array}{rrc}
0 & 1 & -2 \\
-1 & 0 & -2 \\
0 & 0 & 1
\end{array}\right] .
$$

(b) Find the coordinates of the fixed point of T.
8. The function f is defined, for $x>0$, by

$$
f(x)=x^{x} .
$$

(a) Use logarithmic differentiation to obtain an expression for $f^{\prime}(x)$ in terms of x.
(b) Determine the coordinates of the stationary point on the graph of f.
(c) Show that

$$
\begin{equation*}
f^{\prime \prime}(x)=x^{x-1}+x^{x}(1+\ln x)^{2} \tag{4}
\end{equation*}
$$

and hence classify the stationary point as a maximum or a minimum.
9. The complex numbers z and w are represented by points $P(x, y)$ and $Q(u, v)$ respectively in Argand diagrams and

$$
w z=1 .
$$

(a) Show that

$$
\begin{equation*}
x=\frac{u}{u^{2}+v^{2}} \tag{3}
\end{equation*}
$$

and obtain an expression for y in terms of u and v.
(b) The point P moves along the line $y=m x+1$.
(i) Show that the locus of Q is a circle.
(ii) Determine the radius and the coordinates of the centre C of the circle.
(iii) Write down the equation of the locus of C as m varies.

